CGMW - Dynamic Sketching 1
Download >>> https://ssurll.com/2sYm4Y
Margaret Koo is a freelance illustrator and concept artist based in Los Angeles, California. She has worked for a variety of studios and companies such as East West Entertainment Studio and Koi Art Boutique, among others. She has also taught for a variety of art and design schools including Concept Design Academy in Pasadena, California. As an artist who loves the outdoors, she enjoys sketching and painting from life at any moment possible and discovering new ways to incorporate learning from the natural world around her.
In the RGWPM approach, the water availability (WA) is linked to groundwater flow and landscape features. The vast majority of landscapes result from physical and bio-chemical processes occurring in response to the interaction between the solid earth and the biosphere with surface water and groundwater. The discipline which addresses this interaction is hydrogeomorphology (e.g. Scheidegger 1973; Sidle and Onda 2004), which seeks to identify how different forms of water transform different landscapes. Landscapes with their specific geomorphic features can be understood as a snapshot of the cumulative interaction between the solid earth and the main fractions into which rainfall is transformed: surface runoff and infiltration, with infiltration subdivided into evapotranspiration and groundwater recharge. Hence, specific landscape features reveal both surface and groundwater dynamic processes. Scientists interested in the understanding of surface-water systems have long recognized that drainage basins are a fundamental hydrologic feature, controlled to a large extent by their geologic framework and climatic setting (Horton 1945; Leopold et al. 1964; Chorley et al. 1984). Groundwater flow is also governed by the geologic framework, climatic setting (Tóth 1963; Freeze and Witherspoon 1967) and interaction with surface waters, with aquifer systems considered as fundamental hydrogeologic units (Meinzer 1923; Heath 1984).
It is largely recognized that seismotectonic activity in the eastern Southern Alps, lying east of the Schio-Vicenza fault system, is caused by the indentation of the main Adriatic plate [2] [3] [4] [5] , whereas a largely accepted geodynamic interpretation of the tectonic setting in the northern Italian area lying West of the Schio-Vicenza line, comprising the Padanian area and the surrounding Alpine and Apennine belts (Figure 1) is not yet available.
Various geodynamic interpretations have been proposed for the evolution of the Apennine belt, mainly involving subcrustal processes. The most cited model invokes the retreat of the Adriatic lithosphere subducted beneath the Apennine belt, possibly induced by slab pull or mantle flow, as the main driving mechanism of surface deformation [17] [18] [19] [20] [21] .
As concerns the tectonic setting in the Western Alps and the occurrence of major earthquakes in the Ligurian sea and in the western Swiss Alps (Figure 2), most of the geodynamic interpretations so far proposed [52] - [57] , invoke a poorly defined counterclockwise rotation of the northern Adriatic domain as the main driving mechanism. However, this hypothesis does not explain how the proposed behaviour of the northern Adria domain can be reconciled with other evidence about the kinematics of the Adria plate [39] . In this work, the deformation pattern of the Western Alps and the peculiar distribution of seismic activity are explained as an effect of redistribution of orogenic masses that accommodates the convergence of the Adria, Iberia and Eurasia plates.
A long study of the observed deformation pattern in the central Mediterranean region and the search of the geodynamic/tectonic context that may best account for the huge amount of evidence now available [1] [38] [43] - [51] [58] [59] [60] [61] [62] led us to propose the evolutionary reconstruction shown in Figure 3. This interpretation suggests that tectonic activity in the central Mediterranean region has been driven by
In the geodynamic context that characterized the central Mediterranean region in the middle Miocene (Figure 3(a)), the minimum action principle required the Adriatic promontory to decouple from its northwestern protuberance (which was deeply embedded into the Western Alps) and start a roughly NNE ward motion (Figure 3(b)), at the expense of the structures that were present in the Carpatho-Pannonian area [38] [43] . Such decoupling was allowed by the reactivation, as a sinistral transpressional fault system, of the previous Giudicarie thrust zone [70] [71] . The separation between the western and eastern Padanian sectors at the Giudicarie discontinuity (and its presumed southwestward prosecution) has recently been suggested by [11] as well. The above interpretation is consistent with the fact that after the Giudicarie event accretion only occurred in the sector of the Alpine front which lay east of the Giudicarie fault system and the orientation of maximum shortening was perpendicular to the present thrust front in the Eastern Southern Alps [32] [69] [72]